- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Berg, Peter (2)
-
Baird, Cora (1)
-
Carlson, Charles (1)
-
Granville, Kayleigh (1)
-
Granville, Kayleigh E. (1)
-
Huettel, Markus (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Students lose interest in science as they progress from elementary to high school. There is a need for authentic, place‐based science learning experiences that can increase students' interest in science. Scientists have unique skillsets that can complement the work of educators to create exciting experiences that are grounded in pedagogy and science practices. As scientists and educators, we co‐developed a lesson plan for high school students on the Eastern Shore of Virginia, a historically underserved coastal area, that demonstrated realistic scientific practices in students' local estuaries. After implementation of the lesson plan, we observed that students had a deeper understanding of ecosystem processes compared to their peers who had not been involved, were enthusiastic about sharing their experiences, and had a more well‐rounded ability to think like a scientist than before the lesson plan. We share our experiences and five best practices that can serve as a framework for scientists and educators who are motivated to do similar work. Through collaboration, scientists and educators have the potential to bolster student science identities and increase student participation in future scientific endeavors.more » « less
-
Granville, Kayleigh E.; Berg, Peter; Huettel, Markus (, Limnology and Oceanography: Methods)Abstract The aquatic eddy covariance technique is increasingly used to determine oxygen (O2) fluxes over benthic ecosystems. The technique uses O2measuring systems that have a high temporal and numerical resolution. In this study, we performed a series of lab and field tests to assess a new optical submersible O2meter designed for aquatic eddy covariance measurements and equipped with an existing ultra‐high speed optical fiber sensor. The meter has a 16‐bit digital‐to‐analog‐signal conversion that produces a 0–5 V output at a rate up to 40 Hz. The device was paired with an acoustic Doppler velocimeter. The combined meter and fiber‐optic O2sensor's response time was significantly faster in O2‐undersaturated water compared to in O2‐supersaturated water (0.087 vs. 0.12 s), but still sufficiently fast for aquatic eddy covariance measurements. The O2optode signal was not sensitive to variations in water flow or light exposure. However, the response time was affected by the direction of the flow. When the sensor tip was exposed to a flow from the back rather than the front, the response time increased by 37%. The meter's internal signal processing time was determined to be ~ 0.05 s, a delay that can be corrected for during postprocessing. In order for the built‐in temperature correction to be accurate, the meter should always be submerged with the fiber‐optic sensor. In multiple 21–47 h field tests, the system recorded consistently high‐quality, low‐noise O2flux data. Overall, the new meter is a powerful option for collecting robust aquatic eddy covariance data.more » « less
An official website of the United States government
